
P. Lekha Chandra et al Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.58-62

 www.ijera.com 58 | P a g e

 Implementation of a Load Balancer for Instant Messaging over

SIP Server Clusters with Improved Response time

P. Lekha Chandra
1
A.Rama Satish

2

 STUDENT, D V R & Dr H S MIC College of Technology, Kanchikacherla, Krishna (Dt).

Associate Professor, D V R & Dr H S MIC College of Technology, Kanchikacherla, Krishna (Dt).

Abstract—

This paper introduces an implementation of a Load balancer in a cluster of SIP servers which supports

instant messages. The implementation uses TLWL algorithm which provides significantly better

response time by distributing requests across the cluster more evenly, thus minimizing occupancy and

the corresponding amount of time a particular request waits behind others for service. Resulting in

this algorithm improves throughput and response-time of servers. Load balancer maintains sessions in

which requests corresponding to the same session are sent by the load balancer to the same server.

Load balancer improves both throughput and response time versus a single node while exposing a

single interface to external clients.

Index Terms— SIP servers, Load balancer, Least-Work-Left algorithm

I. INTRODUCTION
The Session Initiation Protocol (SIP) is a

signaling protocol used for controlling

communication sessions such as voice and video calls

SIP is an application layer protocol which is

independent of underlying layer. SIP [5],[6],[7] is a

protocol of growing importance with uses in Voice

over IP (VoIP). In large scale ISP’s need to

provide support to millions of users. Hence, a central

component is required to distribute worked across

multiple server clusters. The mechanism is known as

the load balancing and the device that does the load

balancing is called the Load Balancer [4]. It fulfils

the demands included in Integrated Services Digital

Networks (ISDN) decades ago because it achieves

real service integration and offers proven

interoperability. The SIP easily integrates the existing

technologies of the Internet with instant messaging,

presence services, voicemail and email, and network

games. Work on SIP began back in 1995 and the first

mature SIP RFC that fixed the shortcomings of the

previous version (2543) was published in 2002. One

of the fundamental characteristics of VoIP with SIP

is that signaling with SIP usually takes a completely

different path through the Internet than the media of a

running call. It can happen that a call between two

participants cannot be established only because one

of the servers in the signaling chain is not reachable.

We present here a solution to protect a SIP service

against all error types except client failures. We join

the forces of several geographically distributed SIP

servers to a community which we call a federation.

But if their primary server is not reachable for one of

the clients, it can simply switch over to one of the

other servers within the federation. A frequent

mechanism to scale a service is to use some form of a

load-balancing dispatcher that distributes requests

across a cluster of servers. We introduce new

algorithms that outperform existing ones. This work

is relevant not just to SIP, but also for other systems

where it is advantageous for the load balancer to

maintain sessions in which requests corresponding to

the same session are sent by the load balancer to the

same server. SIP is a transaction-based protocol

designed to establish and tear down media sessions,

frequently referred to as call .

 Session-aware request assignment (SARA) is the

process where a system assigns requests to servers

such that sessions are properly recognized by that

server, and subsequent requests corresponding to that

same session are assigned to the same server. While

SARA can be done in HTTP [2] for performance

reasons, it is not necessary for correctness. HTTP

load balancers do not take sessions into account in

making load-balancing decisions. One another key

aspect of the SIP protocol is that different transaction

types, most notably the INVITE and BYE

transactions, can incur significantly different

overheads. A load balancer can make use of this

information to make better load-balancing decisions

that improve both response time [10] and throughput.

 Call-Join-Shortest-Queue (CJSQ) [1] tracks

the number of Calls allocated to each back-end

server and routes new SIP calls to the node

with the least number of active calls

 Transaction-Join-Shortest-Queue [1](TJSQ)

routes a new call to the server that has the

fewest active transactions, rather than the

fewest calls. CJSQ by recognizing that calls in

RESEARCH ARTICLE OPEN ACCESS

P. Lekha Chandra et al Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.58-62

 www.ijera.com 59 | P a g e

SIP are composed of the two transactions,

INVITE and BYE, and that by tracking their

completion separately, finer-grained estimates

of server load can be maintained

Transaction-Least-Work-Left (TLWL) [1] routes a

new call to the server that has the least work. It takes

advantage of the observation that INVITE

transactions are more expensive than BYE

transactions

 We implement these algorithms in

software by adding them to the OpenSER [3] open-

source SIP server configured as a load balancer.

Using the open-source SIPP workload generator

driving traffic through the load balancer to a cluster

of servers running a commercially available SIP

server[8]. Our load balancer can effectively scale SIP

server throughput and provide significantly lower

response times without becoming a bottleneck.

Dramatic response time reductions that we achieve

with TLWL and TJSQ suggest that these algorithms

should be adapted for other applications, particularly

when response time is crucial.

II. BACKGROUND
Overview of Protocol:

SIP is a signaling protocol designed to establish,

terminate and modify media sessions between two or

more parties. Several kinds of sessions can be used.

The SIP does not allocate and manage network

bandwidth as does a network resource reservation

protocol that is considered outside the scope of the

protocol. ―SIP Trapezoid‖ a typical SIP VoIP

scenario as shown in the fig.1 [1].

Fig. 1. SIP Trapezoid

Once endpoints are found, communication is

typically performed directly in a peer-to-peer fashion.

The separation of the data plane from the control

plane is one of the key features of SIP and

contributes to its flexibility. The SIP protocol

requires that proxies forward and preserve headers.

SIP Users, Agents, Transactions, and Messages:

A SIP Uniform Resource Identifier (URI)

uniquely identifies a SIP user. This layer of

indirection enables features such as location

independence and mobility. The SIP users employ

endpoints known as user agents. These entities

initiate and receive sessions. User agents are further

decomposed into User Agent Clients (UAC) and User

Agent Servers (UAS), depending on whether they act

as a client in a transaction (UAC) or a server (UAS).

SIP uses HTTP-like request/response transactions.

The consists of a request to perform a particular

method and at least one response to that request. The

responses may be provisional that they provide some

short-term feedback to the user to indicate progress

or they can be final. A SIP session is a relationship in

SIP between two user agents that lasts for some time

period; in VoIP, a session corresponds to a phone

call, which is called a dialog in SIP and results in

state being maintained on the server for the duration

of the session. A BYE message creates a new

transaction and when the transaction completes, ends

the session. A typical message flow where SIP

messages are routed through the proxy [9] as

illustrated in fig.2.

Fig.2. Message flow of the SIP

Message Header of SIP:

SIP is a text-based protocol that derives much of

its syntax from HTTP. Messages contain headers and

additionally bodies, depending on the type of

message. SIP messages contain an additional protocol

in VoIP, the Session Description Protocol (SDP),

which negotiates session parameters between

endpoints using an offer/answer model.

III. EXISTING SYSTEM
User Agent Clients send SIP requests (e.g.,

INVITE, BYE) to our load balancer that then selects

a SIP server to handle each request. The system is

depicted in the fig.3 [1]. The SIP responses send by

the servers to the load balancer is then forward to the

client.

P. Lekha Chandra et al Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.58-62

 www.ijera.com 60 | P a g e

Fig. 3. System architecture

Once a session has been established, then

the parties participating in the session would typically

communicate directly with each other using a

different protocol for the media transfer.

Novel Algorithm:

A key aspect of our load balancer is that

requests corresponding to the same call are routed to

the same server. Load balancer has the freedom to

pick a server only on the first request of a call.

Therefore, all subsequent requests corresponding to

the call must go to the same server. Our new load-

balancing algorithms are based on assigning calls to

servers by picking the server with the (estimated)

least amount of work assigned but not yet completed.

The concept of assigning work to servers with the

least amount of work left to do have been applied in

other contexts, and then the specifics of how to do

this efficiently for a real application are often not at

all obvious. The system needs another method to

reliably estimate the amount of work that a server [8]

has left to do at the time load-balancing decisions are

made. The load balancer can estimate the work

assigned to a server based on the requests it has

assigned to the server and the responses it has

received from the server. The responses from servers

to clients first go through the load balancer that

forwards the responses to the appropriate clients. The

load balancer can determine when a server has

finished processing a request or call and update the

estimates it is maintaining for the work assigned to

the server.

The Call-Join-Shortest-Queue algorithm

estimates the amount of work a server has left to do

based on the number of calls assigned to the server.

The counters are maintained by the load balancer

indicating the number of calls assigned to each

server. A limitation of this approach is that the

number of calls assigned to a server is not always an

accurate measure of the load on a server. In addition,

different calls may consist of different numbers of

transactions and may consume different amounts of

server resources. Advantages of CJSQ can be used in

environments in which the load balancer is aware of

the calls assigned to servers but does not have an

accurate estimate of the transactions assigned to

servers.

An alternative method is to estimate server

load based on the number of transactions (requests)

assigned to the servers. Transaction-Join-Shortest-

Queue algorithm estimates the amount of work a

server has left to do base on the number of

transactions (requests) assigned to the server. The

counters are maintained by the load balancer

indicating the number of transactions assigned to

each server. A limitation of this approach is that all

transactions are weighted equally. New calls are

assigned to servers with the lowest counter. INVITE

requests are more expensive than BYE requests since

the INVITE transaction state machine is more

complex than the one for non-INVITE transactions in

the SIP protocol.

The Transaction-Least-Work-Left algorithm

addresses this issue by assigning different weights to

different transactions depending on their relative

costs. It is quite similar by relative overhead; in the

special case that all transactions have the same

expected overhead. Counters are maintained by the

load balancer indicating the waiting number of

transactions assigned to each server. A ratio is

defined in terms of relative cost of INVITE to BYE

transactions. New calls are assigned to the server

with the lowest counter. TLWL estimates server load

based on the weighted number of transactions a

server is currently handling. TLWL can be adapted to

workloads with other transaction types by using

different weights based on the overheads of the

transaction types.

Implementation:

The rectangles represent key functional modules

of the load balancer, while the irregular shaped boxes

represent state information that is maintained. The

structure of the load balancing factor is illustrated in

fig.4. The arrows represent communication flows.

Receiver receives requests that are then parsed by the

Parser. Session Recognition module determines if the

request corresponds to an already existing session by

querying the Session State. If so, the request is

forwarded to the server to which the session was

previously assigned; else the Server Selection module

assigns the new session to a server using one of the

algorithms described earlier. The Sender forwards

requests to servers and updates Load Estimates and

Session State as needed. Receiver also receives

responses sent by servers. The client to receive the

response is identified by the Session Recognition

module. The Sender then sends the response to the

client and updates Load Estimates and Session State

as needed. Trigger module updates Session State and

P. Lekha Chandra et al Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.58-62

 www.ijera.com 61 | P a g e

Load Estimates after a session has expired. Our load

balancer selects the appropriate server to handle the

first request of a call. When a new transaction

corresponding to the call is received, it will be routed

to the correct server.

Fig. 4.Load balancer architecture

When an INVITE request arrives

corresponding to a new call, the call is assigned to a

server using one of the algorithms [1]. Subsequent

requests corresponding to the call are always sent to

the same machine to where the original INVITE was

assigned. The load balancer stops sending requests to

the server if a server fails. The load balancer can be

notified to start sending requests to the server again if

the failed server is later revived.

A primary load balancer could be configured

with a secondary load balancer that would take over

in the event that the primary fails. The primary load

balancer would periodically checkpoint its state,

either to the secondary load balancer over the

network or to a shared disk. Future area of research is

to implement this fail over scheme in a manner that

both optimizes performance and minimizes lost

information in the event that the primary load

balancer fails.

IV.PROPOSED SYSTEM
 While conceptually and technically TLWL,

TJSQ use similar principles for assigning sessions to

servers, there are considerable differences between

them in terms of performance polling and estimations

of server stress conditions. Although their

performance is validated through a complex data

(VOIP) oriented SIP mechanisms, we would like to

extend them to other areas of communication

technologies. Propose to evaluate our algorithms

on larger clusters to further test their scalability,

adding a fail-over mechanism using a load balancer

which overcomes the single point of failure

problems, and will implement this scalability on

other SIP workloads such as instant messaging.

Instant messaging (IM) is a type of online chat

which offers real time text transmission over the

internet. Short messages are typically transmitted bi-

directionally between two parties, when each user

chooses to complete a thought and select "send".

Instant messaging systems tend to facilitate

connections between specified known users .Instant

messaging has proven to be similar to personal

computers, email, and the WWW, in that its adoption

for use as a business communications medium was

driven primarily by individual employees using

consumer software at work, rather than by formal

mandate or provisioning by corporate information

technology departments. Tens of millions of the

consumer IM accounts in use are being used for

business purposes by employees of companies and

other organizations.

V. PERFORMANCE ANALYSIS

TLWL algorithm [1] helps to select a server

from cluster of servers which has very least work left

for messing sending. Graph shows the relationship

between response time and server nodes for both

voice call and instant messaging. In voice call

number of server nodes increases response time also

increases and in instant messing even though the

server nodes increases there is no drastic increment in

response time and it maintain almost equal response

for this proposed system . Server limit is not controls

overall system performance.

Comparison between number of server nodes and response

time

Several opportunities exist for potential future work.

This include design and implementation of secondary

load balancer to handle overall session in failure of

primary load balancer without effecting the data

transformation between clients.

REFERENCES

[1] Hongbo Jiang, Erich Nahum, Wolfgang

Segmuller, Asser N. Tantawi, and Charles

P.Wright, ―Design, Implementation, and

Performance of a Load Balancer for SIP

Server Clusters,‖ in Proc. IEEE/ACM

transactions on networking, Oct. 2009.

[2] R.Fielding ,JGettvs, J.Mogul,H.frvstyk and

t.Berners-Lee, ‖Hypertext Trasfer Protocol-

HTTP/1.1,‖ Internet Engineering Task Force,

RFC 2068, Jan 1997.

 [3] M. Aron, P. Druschel, and W. Zwaenepoel,

―Efficient support for P-HTTP in cluster-

P. Lekha Chandra et al Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 1(Version 3), January 2014, pp.58-62

 www.ijera.com 62 | P a g e

based Web servers,‖ in Proc. USENIX Annu.

Tech. Conf., Monterey, CA, Jun. 1999, pp.

185–198.

[4] Hongbo Jiang, Erich Nahum, Wolfgang

Segmuller, Asser N. Tantawi, and Charles

P.Wright, ―Design, Implementation, and

Performance of a Load Balancer for SIP

Server Clusters,‖ in Proc. IEEE/ACM

transactions on networking, Oct. 2009.

[5] V.Hilt and I.Widjaja, ―Controlling overload n

networks of SIP servers,‖ in

Proc.IEEEICNP.Orlandp.FL. Oct

2008,pp.83-93.

 [6] E. Nahum, J. Tracey, and C. P. Wright,

―Evaluating SIP proxy server performance,‖

in Proc. 17
th
 NOSSDAV,

Urbanachampaign,IL, Jun 2007,pp.79-85.

[7] Foundry Networks,‖ ServerIron switches

support SIP load balancing VOIP/SIP traffic

Available:http://www.foundrynet.com/solutio

ns/sol-app-switch/sol- voip-sip/

[8] M. Aron and P. Druschel, ―TCP

implementation enhancements for improving

Webserver performance,‖ Computer Science

Department, Rice University, Houston, TX,

Tech. Rep. TR99-335, Jul. 1999.

[9] E. Nahum, J. Tracey, and C. P. Wright,

―Evaluating SIP proxy server performance,‖

in Proc. 17
th

 NOSSDAV, Urbana champaign,

IL, Jun 2007,pp.79-85.

[10] Z. Fei, S. Bhattacharjee, E. Zegura, and M.

Ammar, ―A novel server selection technique

for improving the response time of a

replicated ser vice,‖ in Proc. IEEE

INFOCOM, 1998, vol. 2, pp. 783–791.

